Pion photoproduction in a gauge invariant approach

F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU)

Jun. 1, 2010

Introduction

- Study of N* is important for understanding of strong interactions
 A clear understanding of N* structure, spectrum and decay will reveal the role of confinement and chiral symmetry in QCD non-perturbative region.
- Dynamical coupled-channel models are needed

 N^* states are unstable and couple strongly with meson-baryon continuum states. In order to extract N^* parameters and understand N^* structures, dynamical coupled-channel models are needed to analyze the meson production data.

• Gauge invariance is important for photo-production

Gauge invariance is a fundamental symmetry. Without it results become arbitrary. Note current conservation is necessary but not sufficient for gauge invariance.

• This work: gauge invariant approach for π photo-production in Jülich dynamical coupled-channel model

Hadronic scattering

- $|\Gamma\rangle = |F\rangle + XG|F\rangle$
 - $S = S_0 + S_0 \langle F | G | \Gamma \rangle S$
 - X = U + UGX
 - $T = |\Gamma\rangle S \langle \Gamma| + X$

- $|F\rangle$: bare vertex
- S_0 : bare propagator
- X: non-polar part of T matrix
- T: full T matrix

- $|\Gamma\rangle$: dressed vertex
 - S: dressed propagator
 - U: driving term of X

Jülich πN meson-exchange model

Dynamical coupled-channel model: $N\pi$, $N\eta$, $\Delta\pi$, $N\rho$, $N\sigma$, ΛK , ΣK

F. Huang, MENU2010, Williamsburg

Jun. 1, 2010

4/19

Photo-production amplitude H. Haberzettl, PRC56(1997)2041

Photo-production amplitude H. Haberzettl, PRC56(1997)2041

Photo-production amplitude H. Haberzettl, PRC56(1997)2041

F. Huang, MENU2010, Williamsburg

Jun. 1, 2010 5 / 19

- Without gauge invariance results become arbitrary
- Current conservation $k^{\mu}M_{\mu} = 0$ necessary but not sufficient

- Without gauge invariance results become arbitrary
- Current conservation $k^{\mu}M_{\mu} = 0$ necessary but not sufficient
- Electromagnetic couplings to driving terms

- Without gauge invariance results become arbitrary
- Current conservation $k^{\mu}M_{\mu} = 0$ necessary but not sufficient
- Electromagnetic couplings to driving terms

Amplitude results from a highly non-linear equation

- Without gauge invariance results become arbitrary
- Current conservation $k^{\mu}M_{\mu} = 0$ necessary but not sufficient
- Electromagnetic couplings to driving terms

- Amplitude results from a highly non-linear equation
- Inner consistency requires generalized Ward-Takahashi identity

 $k_{\mu}M^{\mu} = - |\Gamma_{s}\tau\rangle S_{p+k} Q_{i} S_{p}^{-1} + S_{p'}^{-1} Q_{f} S_{p'-k} |\Gamma_{u}\tau\rangle + \Delta_{p-p'+k}^{-1} Q_{\pi} \Delta_{p-p'} |\Gamma_{t}\tau\rangle$

Q: charge operator S: nucleon propagator Δ : pion propagator $|\Gamma\rangle$: dressed vertex

Practical strategy

Gauge invariance condition:

$$k_{\mu}M^{\mu} = - |\Gamma_{s}\tau\rangle S_{p+k} Q_{i} S_{p}^{-1} + S_{p'}^{-1} Q_{f} S_{p'-k} |\Gamma_{u}\tau\rangle + \Delta_{p-p'+k}^{-1} Q_{\pi} \Delta_{p-p'} |\Gamma_{t}\tau\rangle$$

$$(1 - UG) (-|\Gamma_{s}\rangle e_{i} + |\Gamma_{u}\rangle e_{f} + |\Gamma_{t}\rangle e_{\pi}) - k_{\mu}UG (M_{tL}^{\mu} + M_{uL}^{\mu})$$

Approximating M_a^{μ} under gauge invariance condition:

$$\begin{split} \boldsymbol{M}_{a}^{\mu} &= \left(1 - UG\right)\boldsymbol{M}_{c}^{\mu} - UG\left(\boldsymbol{M}_{tL}^{\mu} + \boldsymbol{M}_{uL}^{\mu}\right) + T^{\mu} \\ \boldsymbol{k}_{\mu}\boldsymbol{M}_{c}^{\mu} &= -\left|\boldsymbol{\Gamma}_{s}\right\rangle\boldsymbol{e}_{i} + \left|\boldsymbol{\Gamma}_{u}\right\rangle\boldsymbol{e}_{f} + \left|\boldsymbol{\Gamma}_{t}\right\rangle\boldsymbol{e}_{\pi}, \qquad \boldsymbol{k}_{\mu}T^{\mu} = 0 \end{split}$$

Interaction current:

$$M_{\rm int}^{\mu} = M_{c}^{\mu} + T^{\mu} + X G \left[(M_{uT}^{\mu} + M_{tT}^{\mu}) + T^{\mu} \right]$$

F. Huang, MENU2010, Williamsburg

Choosing the contact current M_c^{μ}

Constraints: gauge invariance; contact term; crossing symmetry

Introduce an auxiliary current C^µ:

$$C^{\mu} = -e_{\pi} \frac{(2q-k)^{\mu}}{t-q^2} \left(f_t - \hat{F} \right) - e_f \frac{(2p'-k)^{\mu}}{u-p'^2} \left(f_u - \hat{F} \right) - e_i \frac{(2p+k)^{\mu}}{s-p^2} \left(f_s - \hat{F} \right)$$
$$\hat{F} = 1 - \hat{h} \left(1 - \delta_s f_s \right) \left(1 - \delta_u f_u \right) \left(1 - \delta_t f_t \right)$$

k, p, q, p': 4-momenta for incoming γ, N & outgoing π, N \hat{h} : fit parameter

The contact current M^µ_c can be written as

$$M_{c}^{\mu} = g_{\pi}\gamma_{5}\left\{\left[\lambda + (1-\lambda)\frac{\not{a} - \beta \not{k}}{m' + m}\right]C^{\mu} - (1-\lambda)\frac{\gamma^{\mu}}{m' + m}\left[e_{\pi}f_{t} - \beta k_{\rho}C^{\rho}\right]\right\}$$

 β : fit parameter

Check gauge invariance: M^µ_c satisfies

$$k_{\mu}M_{c}^{\mu} = - |\Gamma_{s}\rangle e_{i} + |\Gamma_{u}\rangle e_{f} + |\Gamma_{t}\rangle e_{\pi}$$

Reaction theory: all together

Full photo-production current:

$$M^{\mu} = M^{\mu}_{s} + M^{\mu}_{u} + M^{\mu}_{t} + M^{\mu}_{int}$$

 $M^{\mu}_{int} = M^{\mu}_{c} + T^{\mu} + X G [(M^{\mu}_{uT} + M^{\mu}_{tT}) + T^{\mu}]$

 M^{μ} satisfies the generalized Ward-Takahashi identity (gauge invariant)

$$k_{\mu}M^{\mu} = - |\Gamma_{s}\tau\rangle S_{p+k} Q_{i} S_{p}^{-1} + S_{p'}^{-1} Q_{f} S_{p'-k} |\Gamma_{u}\tau\rangle + \Delta_{p-p'+k}^{-1} Q_{\pi} \Delta_{p-p'} |\Gamma_{t}\tau\rangle$$

 T^{μ} : undetermined transverse contact current (set to be zero in this work) X: non-polar part of hadronic scattering (Jülich coupled-channel πN model)

Jülich-Georgia

W=1186 MeV

120 W=1263 MeV

120

120

W=1574 Me

W=1480 Me

30

180

Results: Σ_{γ} for $\gamma p \rightarrow \pi^+ n$

Jülich-Georgia

Jülich-Georgia

EBAC

Results: Σ_{γ} for $\gamma p \rightarrow \pi^0 p$

Jülich-Georgia

Results: $d\sigma/d\Omega \& \Sigma_{\gamma}$ for $\gamma n \to \pi^- p$

Jülich-Georgia

Jülich-Georgia

Results: $\gamma N \rightarrow \pi N$ total cross sections

F. Huang, MENU2010, Williamsburg

Jun. 1, 2010

15/19

Resonance & background

- Splitting $T = T^P + T^{NP}$ arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T^{NP}
- Identifying T^{NP} as T^{BG} problematic

 $T = T^{P} + T^{NP}$ $T = \frac{a_{-1}}{z - z_{0}} + a_{0} + \mathcal{O}(z - z_{0})$ $a_{0} = a_{0}^{P} + T^{NP}$ $T = T^{R} + T^{BG}$ $T^{R} = \frac{a_{-1}}{z - z_{0}}$ $T^{BG} = T - T^{R}$

- Pole position & residue are less model-dependent
- $T^{R} \& T^{BG}$ more meaningful than $T^{P} \& T^{NP}$ to compare in various models

Resonance & background

- Splitting $T = T^P + T^{NP}$ arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T^{NP}
- Identifying T^{NP} as T^{BG} problematic

- Pole position & residue are less model-dependent
- $T^{R} \& T^{BG}$ more meaningful than $T^{P} \& T^{NP}$ to compare in various models

Resonance & background

- Splitting $T = T^P + T^{NP}$ arbitrary and highly model-dependent e.g. Jülich model and EBAC model both get the data but they have quite different T^{NP}
- Identifying T^{NP} as T^{BG} problematic

 $T = T^{P} + T^{NP}$ $T = \frac{a_{-1}}{z - z_{0}} + a_{0} + \mathcal{O}(z - z_{0})$ $a_{0} = a_{0}^{P} + T^{NP}$ $T = T^{R} + T^{BG}$ $T^{R} = \frac{a_{-1}}{z - z_{0}}$ $T^{BG} = T - T^{R}$

- Pole position & residue are less model-dependent
- $T^{R} \& T^{BG}$ more meaningful than $T^{P} \& T^{NP}$ to compare in various models

Poles & residues

Table: Effective electromagnetic couplings g^{γ} in helicity basis (PRELIMINARY). The 1st & 2nd lines for isospin 1/2 resonance correspond to results for p & n, respectively.

	Pole position [MeV]	$g_{1/2}^{\gamma}$ [MeV $^{1/2}$]	$g_{3/2}^{\gamma}$ [MeV ^{1/2}]
$P_{33}(1232)$	1217 — 45 i	0.42 - 0.11 i	4.95 + 1.53 i
$P_{11}(1440)$	1385 — 72 i	-0.07 - 0.26 i	
		-0.92 + 0.08 i	
$D_{13}(1520)$	1503 — 47 i	-3.55 + 2.14 i	2.80 - 1.34 i
		1.99 — 1.84 i	$-4.00 + 1.68 \mathrm{i}$
$S_{11}(1535)$	1520 — 64 i	-1.52 + 1.87 i	
		4.05 - 2.01 i	
$S_{31}(1620)$	1592 — 37 i	-0.43 - 0.19 i	
$S_{11}(1650)$	1666 — 70 i	3.31 + 2.67 i	
		-1.22 - 2.50 i	
$D_{33}(1700)$	1638 — 122 i	0.37 — 8.98 i	-3.91 + 0.81 i
$P_{13}(1720)$	1665 — 101 i	0.11 - 5.41 i	0.54 + 1.55 i
		-0.51 + 2.71 i	0.28 - 3.23 i
$P_{31}(1910)$	1833 — 110 i	59.29 — 31.11 i	

$$g^{\gamma} = a_{-1}^{\gamma}/g^{\pi}$$

$$g^{\pi} = \sqrt{a_{-1}^{\pi}}$$

Summary & perspectives

- Reaction theory is based on Jülich dynamical coupled-channel model which describes πN scattering successfully
- Full photoproduction amplitudes satisfy the generalized Ward-Takahashi identity and thus are gauge invariant
- Both the differential cross sections and photon spin asymmetries for π photoproduction are described quite well up to $\sqrt{s} = 1.65$ GeV
- Effective electromagnetic couplings (preliminary) are extracted by analytic continuation of the full amplitudes to un-physical Riemann sheet
- Resonance and background contributions will be studied
- Future plan:
 - η and *K*-photoproduction
 - Electro-production

Importance of gauge invariance: $p p \rightarrow p p \gamma$

None of the existing models can describe high-precision KVI data for coplanar geometries involving small *p* scattering angles. Lines: Martinus, Scholten, Tjon, PRC 58, 686 (1998); PRC 56, 2945 (1997); Herrmann, Nakayama, Scholten, Arellano, NPA 582, 568 (1995)

Importance of gauge invariance: $p p \rightarrow p p \gamma$

None of the existing models can describe high-precision KVI data for coplanar geometries involving small p scattering angles. Lines: Martinus, Scholten, Tjon, PRC 58, 686 (1998); PRC 56, 2945 (1997); Herrmann, Nakayama, Scholten, Arellano, NPA 582, 568 (1995)

Construct the contact current → full amplitude obeys WTI (gauge invariant) [K. Nakayama & H. Haberzettl, PRC 80, 051001 (2009)]

Importance of gauge invariance: $p p \rightarrow p p \gamma$

None of the existing models can describe high-precision KVI data for coplanar geometries involving small p scattering angles. Lines: Martinus, Scholten, Tjon, PRC 58, 686 (1998); PRC 56, 2945 (1997); Herrmann, Nakayama, Scholten, Arellano, NPA 582, 568 (1995)

Construct the contact current → full amplitude obeys WTI (gauge invariant) [K. Nakayama & H. Haberzettl, PRC 80, 051001 (2009)]

It is important to properly take into account the interaction current for NN bremsstrahlung reaction!

